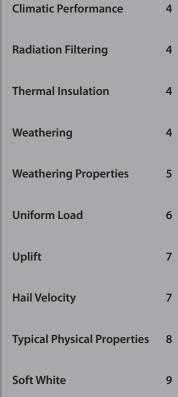


High performance products like these rely on polycarbonate glazing to resist high impact, high winds, hailstorms, fire, temperature extremes, and long-term exposure to ultraviolet light...



the same conditions that skylights and side lights must resist.

CONTENTS

Description

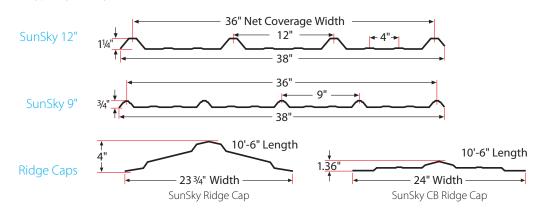
Chemical Resistance

10

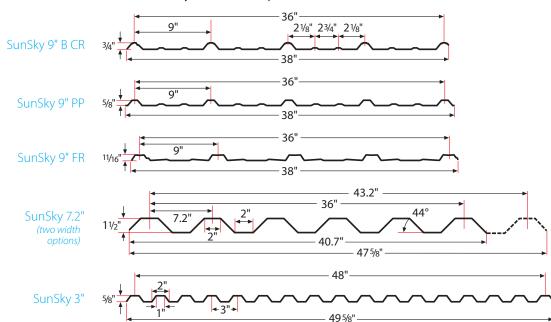
Recognized and Classified

Description

For skylight and sidelite applications, SunSky® corrugated polycarbonate panels offer multiple advantages over traditional fiberglass corrugated panels: up to 20 times greater impact resistance, the highest light transmission rates, the lowest yellowing index, the highest load rating, and the highest resistance to wind uplift... outstanding properties


confirmed in accredited laboratory testing and in installations worldwide since 1984.

The panels are also available in custom profiles to match any corrugated metal roofing system, and in custom thickness to customer specifications (minimums apply).


SunSky Features:

- Virtually unbreakable
- Self extinguishing
- Retains optical clarity over time
- Wide temperature range (-40°F to 210°F)
- · Easily and safely Installed
- 10-Year warranty
- Hail and wind resistant
- 100% UV protection

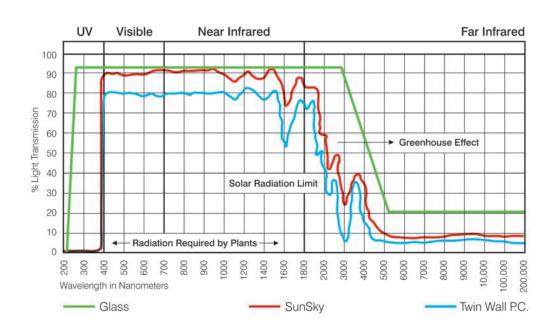
Stock Profiles (Typically Readily Available)

Specialty Profiles* (Minimum Order Quantity & Lead Time Required)

ProfileDescription	Available Color/Tint	Thickness (in/mm)	Length
SunSky 9" all types, and 12"	Clear, Soft White and Opal White	0.032 / 0.80	8', 10', 10'-6", 11', 12', 16', 24'
SunSky 12"	Clear, Soft White and Opal White	0.039 / 1.00	8', 10', 10'-6", 11', 12', 16', 24'
SunSky 7.2"	Clear, Soft White and Opal White	0.039/ 1.00	Special Order
SunSky Ridge Cap	Clear, Soft White and Opal White	0.039/1.00	10'-6"

Custom lengths available. Lead time depends on production schedule and order quantity.

^{*} Specialty profiles are typically not in stock, but can be produced provided minimum order requirements, lead time, and pricing considerations are met.



Radiation Filtering

SunSky Panels transmit radiation selectively. They form a complete shield against harmful ultraviolet rays which may scorch crops, while admitting most of the visible light, essential to crop health and photosynthesis. By completely blocking the far infrared rays, SunSky prevents heat loss at night. SunSky blocks both UV-A and UV-B.

Climatic Performance

SunSky Panels perform flawlessly under extremely harsh climatic conditions. Service temperature range -40° to 210° F, enabling unlimited use throughout the world.

Thermal Insulation

SunSky's heat conductivity is lower than fiberglass (FRP) sheets. These features facilitate considerable heating cost cuts, in comparison with fiberglass.

Weathering

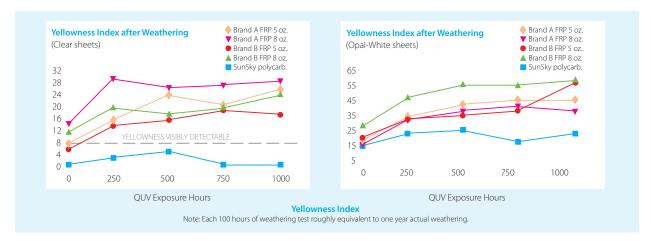
Due to its coextruded built-in UV blocking and protecting layer, SunSky maintains its light transmission and physical properties and does not yellow: Arizona tests and accelerated QUV tests indicate a significant advantage of SunSky over competitive sheets such as twin wall polycarbonate and fiberglass.

QUV 1000 HOUR YELLOWING TEST

(roughly equivalent to 10 year actual exposure)

SunSky Corrugated Polycarbonate Panels exhibit significantly greater resistance to yellowing than fiberglass panels.

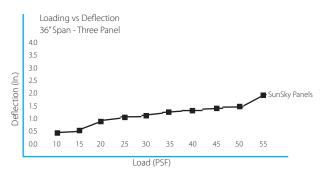
4

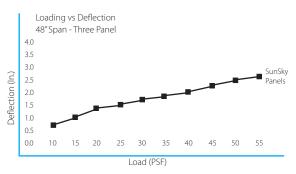


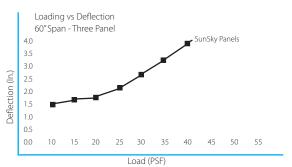
Weathering Properties

SunSky Corrugated Polycarbonate Panels demonstrate greater resistance to yellowing, and transmit more light, than fiberglass panels. The results from QUV testing depicted below demonstrate the superior performance of SunSky compared to competing products. 100 hours of QUV exposure is roughly equivalent to 1 year of actual outdoor exposure in Arizona.

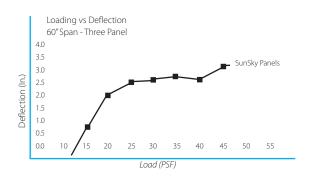
Exp. Hrs.	% LT Light Transmission	Δ% LT Light Transmission	YI Yellowing Index	ΔYI Yellowing Index
0	91.2	0	1.26	0
250	90.7	-0.5	4.27	3.01
500	89.7	-1.5	6.69	5.43
750	90.9	-0.3	3.78	2.52
1000	91.2	0	3.70	2.44
0	90.3	0	9.89	0
250	88.0	-2.3	18.25	8.36
500	83.7	-6.6	24.43	14.54
750	86.4	-3.9	22.43	12.54
1000	83.3	-7.0	27.88	17.99
0	85.8	0	15.10	0
250	75.4	-10.4	31.98	16.88
500	82.7	-3.1	27.42	13.32
750	79.3	-6.3	29.89	14.79
1000	76.6	-9.2	30.45	15.35
0	90.5	0	7.17	0
250	85.5	-5.0	14.83	7.66
500	84.0	-6.5	16.74	9.57
750	81.5	-9.0	20.68	13.51
1000	83.8	-6.7	19.47	12.30
0	83.5	0	12.61	0
250	81.7	-1.8	22.56	9.95
500	79.2	-4.3	19.61	7.00
750	78.2	-5.3	21.62	9.01
1000	80.1	-3.4	26.97	14.36
	250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 750 1000 0 750	250 90.7 500 89.7 500 89.7 750 90.9 1000 91.2 0 90.3 250 88.0 500 83.7 750 86.4 1000 83.3 0 85.8 250 75.4 500 82.7 750 79.3 1000 76.6 0 90.5 250 85.5 500 84.0 750 81.5 1000 83.8 0 83.5 250 81.7 500 79.2 750 79.2	250 90.7 -0.5 500 89.7 -1.5 750 90.9 -0.3 1000 91.2 0 0 90.3 0 250 88.0 -2.3 500 83.7 -6.6 750 86.4 -3.9 1000 83.3 -7.0 0 85.8 0 250 75.4 -10.4 500 82.7 -3.1 750 79.3 -6.3 1000 76.6 -9.2 0 90.5 0 90.5 0 500 84.0 -6.5 750 81.5 -9.0 1000 83.8 -6.7 0 83.8 -6.7	250 90.7 -0.5 4.27 500 89.7 -1.5 6.69 750 90.9 -0.3 3.78 1000 91.2 0 3.70 0 90.3 0 9.89 250 88.0 -2.3 18.25 500 83.7 -6.6 24.43 750 86.4 -3.9 22.43 1000 83.3 -7.0 27.88 0 85.8 0 15.10 250 75.4 -10.4 31.98 500 82.7 -3.1 27.42 750 79.3 -6.3 29.89 1000 76.6 -9.2 30.45 0 90.5 0 7.17 250 85.5 -5.0 14.83 500 84.0 -6.5 16.74 750 81.5 -9.0 20.68 1000 83.8 -6.7 19.47 0

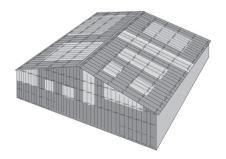



SunSky Corrugated Polycarbonate Panels had no mechanical failures or cracks at the end of any test to measure ultimate load when tested to "ICBO Evaluation Service Acceptance Criteria, AC 16 Plastic Skylights" (UL recognized file number 18450).


Note: The tables below are provided only as a guideline. In formation was obtained from tests using SunSky polycarbonate panels as roofing and siding. To avoid premature failure, all proposed spans should be tested in actual tests. In addition, a licensed engineer or architect must verify the application.

Multi-Panel Runs for roofing and siding





Single-Panel Runs for roofing and siding

For detailed Installation Instructions Contact Palram Americas and request:

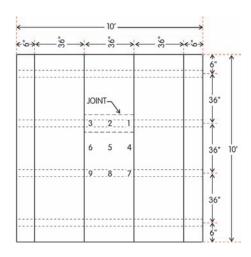
SunSky Installation Guide Booklet

Uplift

SunSky corrugated polycarbonate panels meet Uplift Test Criteria specified in UL 580 Test for Uplift Resistance of Roof Assemblies (UL Class 90).

Test Description

Roof Covering: Corrugated polycarbonate roof


panels with 9-inch spaced corrugations. The tested material is 0.032" thick x 38" wide

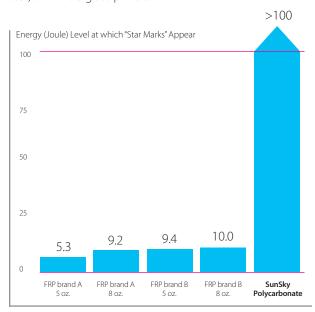
and 12 feet long.

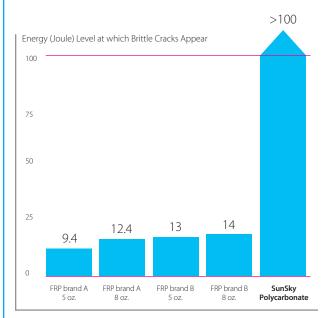
Fastener: #12-14 x 11/4" Type 2 Structural

Drilling Fastener, carbon steel, zinc plate with ¾" O.D. heavy EPDM/

galvanized washer.

Test Results


A buckled hip was visible during the test. The fasteners were in place and no cracks or breaks were found in the SunSky panels. The test assembly withstood all phases of test for Class 90. The roof assembly described in this report met the uplift test criteria specified in UL 580 - Test for Uplift Resistance of Roof Assemblies.


Note: The buckled hip returned to its original shape after testing with no panel damage or permanent deformation.

Hail Velocity

SunSky Corrugated Polycarbonate Panels demonstrate greater resistance to high-velocity impact (hail simulation test) than fiberglass panels.

Note: SunSky Corrugated Polycarbonate Panels remain ductile with no cracks or breaks at the maximum energy level at which this test is conducted: 100 Joules (1J=0.737 ft•lb)

Approvals

- UL Construction No. 167 File No. R18450
- Miami Dade County Product Control*
 Approved Acceptance No. NOA 00-1226.02

 *Highest U.S. Code Standards
- FBC Approval: Pending (Call for updated info)
- City of Los Angeles Research Report RR25298

Typical Physical Properties

	Property	Test Method	Value
Dhyaigal	Specific gravity	ASTM D-792	1.2
Physical	Density (lb./ft.²)	ASTM D-1505	75
	Water Absorption, 24 hr. @ 73°F (%)	ASTM D-570	0.15
	Tensile strength at yield, 0.4 in./min. (psi)	ASTM D-638	9,000
Mechanical	Tensile strength at break, 0.4 in./min. (psi)	ASTM D-638	9,500
	Elongation at yield, 0.4 in./min. (%)	ASTM D-038 ASTM D-638	9,500
	Elongation at break, 0.4 in./min. (%)	ASTM D-638	>80
	Tensile Modulus, 0.04 in./min. (psi)	ASTM D-638	340,000
	Flexural Modulus 0.04 in./min. (psi)	ASTM D-790	380,000
	Flexural strength at yield, 0.04 in/min. (psi)	ASTM D-790	14.500
	Izod impact strength, notched (73°F), ft/lb/in.	ASTM D-256	1.5
	Impact falling weight, (ft.lb./in.)	ISO 6603/1 ^a	37
	Rockwell hardness, R scale	ASTM D-785	118
	OSHA point–29	CFR 1910.23 (e) (8) ^a	Passed 200 lb.
	Uplift	UL 580 ^b	Passed UL 90
T	Optimal Temperature Range °F -40 to +210		
Thermal	U-Factor Summer	C-236	1.04
	U-Factor Winter	C-236	1.14
	Heat Deflection Temperature °F Load: 264 (psi)	ASTM D-648	275
	Coefficient of Linear Thermal Expansion 10 ⁻⁵ /°F	ASTM D-696	3.6
	Thermal Conductivity BTU in./(hr. ft² °F)	ASTM C-177	1.46
	·		
Flammability	Self-Ignition (°F) Burning Extent	ASTM D-1929 ASTM D-635	977 CC2 (<2.5 in.)
	Smoke Density (%)	ASTM D-2843	51
	Smoke Developed	UL 723 (E-84) ^a	47.0
	Flame Spread	UL 723 (E-84) ^a	4.7 (Class A)
	Melt Point (°F)	ASTM D-1519-95	420
Electrical	Dielectric Constant:	7,5,1,1,5	120
Liectricai	1kHz	ASTM D-150	2.6
	1MHz	ASTM D-150	2.4
	Dissipation Factor:	ASTIVIE 190	۷.1
	1kHz	ASTM D-150	0.005
	1MHz	ASTM D-150	0.02
	Dielectric Strength Short:		****
	500 V/s (V/mil.)	ASTM D-149	520
	Surface Resistance:		
	Ketley (Ohm)	ASTM D-257	4.1 x 10 ¹⁵
	Volume Resistance:		
	Ketley (Ohm-cm)	ASTM D-257	1.7 x 10 ¹⁷
Optical	Visible light transmittance (%)		
Ориса	Clear	ASTM D-1003	90
	Soft White	ASTM D-1003	85
	Opal White	ASTM D-1003	45
	Haze/Diffusion (%)		
	Clear	ASTM D-1003	<1
	Soft White	ASTM D-1003	100
	Opal White	ASTM D-1003	100
	Yellowness Index)		
	Clear	ASTM D-1003	<1
	Soft White	ASTM D-1003	<3
	Opal White	ASTM D-1003	<1
	Shading coefficient		
	Clear	ASTM E424-71	1
	Soft White	ASTM E424-71	.96
	Opal White	ASTM E424-71	.56

 $^{^{}a}$ All the results depicted in this table were obtained by following the indicated ASTM method except where another method is indicated by the appearance of this symbol (b)

Increase Productivity while Reducing Energy Costs with... SunSky Soft White

Let the beauty of natural sunlight in, without the harshness! Translucent SunSky Soft White panels allow 85% light transmission, for light that fills the room without unpleasant glare or the stark contrast of hard-edged shadows.

SunSky Soft White panels provide diffused, omni-directional ambient light, creating a more comfortable, worker-friendly environment for enhanced productivity. They're perfect for skylights, ridge lighting and vertical side lights all of which can decrease energy costs by reducing the need for daytime electric lighting. And the soft white coloration is co-extruded with the polycarbonate, so it will never peel or wear off.

SunSky Soft White is available in all of our standard or custom profiles.

All of the features of our SunSky Clear panels... Without the Glare!

- 85% Light Transmission vs. 90% for Clear
- Soft/Diffused Light for a More Productive Environment
- Virtually Unbreakable Blocks 100% of Harmful UV Rays
- Service Temperature Range for All Climates
- Light Weight Easy to Install

Clear skylight panels can create a harsh indoor lighting environment, with glaring sunlight in some areas and stark shadows in others.

SunSky Soft White panels fill the room with natural light, for better all-around visibility and a more productive work area.

(

Need Insulated side lights? Consider SUNLITE Multi-Wall Polycarbonate.

If you have an application that requires insulated side lights, consider SUNLITE® multi-wall polycarbonate. Because SUNLITE has multiple air spaces between the inner and outer surfaces, it provides excellent insulation. To learn more about equipping your building with SUNLITE, contact your Palram Distributor. Ask for our Applications Idea Sheet (form #1201).

Features at a Glance

- Energy saving design
- Rigid and light weight
- Highly impact resistant
- Up to 80% light transmission for maximum light
- Virtually unbreakable
- 10-year warranty
- Easy to install
- 100% UV protection
- 200 times stronger than glass

Chemical Resistance

The mechanism of chemical attack on polycarbonate sheets differs significantly from the mechanism of corrosion of metals. Corrosion of metals results in a gradual loss of surface material as a result of electrolytic action by the relevant chemicals. In the cases where chemical attack on polycarbonate sheet occurs, all or a portion of a range of effects can be observed. Ethylene chloride, chloroform, tetrachloroethane, m-cresol, pyridine and other chemicals can cause partial dissolution of polycarbonate. Swelling agents include benzene, chlorobenzene, tetralin, acetone, ethyl acetate, acetonitrile and carbon tetrachloride. Additional effects include color change and or whitening. These effects may not always lead to product failure, especially for non-loaded sheets. Nevertheless, the level of measured mechanical properties will be reduced. The most critical effect of chemical attack is stress cracking or crazing, which may range in size from being visible to the naked eye to being only visible under a microscope. Stress cracks will always result in sheet failure which will emanate from areas of greatest stress (screws, fixings, bends, etc.)

Polycarbonate sheets are generally not recommended for use with acetone, ketones, ethers, and aromatic and chlorinated hydrocarbons in addition to aqueous or alcoholic alkaline solutions, ammonia gas and its solutions and amines.

Polycarbonate is resistant to mineral acids, many organic acids, oxidizing and reducing agents, neutral and acid salt solutions, many greases, waxes and

oils, saturated, aliphatic and cycloaliphatic hydrocarbons and alcohols, with the exception of methyl alcohol. The resistance of polycarbonate to water may be described as good up to approximately 60°C. At higher temperatures, degradation occurs, the extent of which depends on time and temperature. Polycarbonate should therefore not be exposed for long periods of time to hot water. However, brief contact with hot water has no effect. For example, polycarbonate tableware can be washed over 1000 times in a dishwasher with no adverse effects.

The table that appears below lists the resistance of polycarbonate sheets to a number of commonly encountered chemicals and other corrosive media at room temperature (Information on chemical resistance at higher temperatures will be supplied upon request). Where the chemical resistance varies with concentration, the results of tests at different concentrations is presented. The information on chemical resistance is based on our research and experience (information on compatible adhesives can be found on page 18 of the SunSky Installation Guide), and serves as a basis for recommendation. Palram Americas does not guarantee chemical resistance unless specific separate, documentation is supplied.


For chemicals and corrosive media not depicted in the list, please contact your Palram Americas representative.

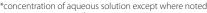
Chart Key: R = Resistant

IR =	Limited	Resistance	

N = No Resistance

R = Resistant	LR = Lim	nited Resista	nce	N = No Resistance	e			
Chemical	Concentration %*	Resistance	Chemical	Concentration %*	Resistance	Chemical	Concentration %*	Resistance
Acetaldehyde		N	Benzyl Alcohol		N	Cloves		N
Acetic Acid	10	R	Betadine		R	Coal Gas		R
Acetic Acid	25 (concentrated)	LR (N)	Bleach (Clorox)		R	Coca Cola		LR
Acetone		N	Blood and Blood	l Plasma	R	Cocoa		LR
Acetylene		R	Borax		R	Cod Liver Oil		R
Acrylonitrile		N	Boric Acid		R	Coffee		LR
Ajax Detergent		R	Brake Fluid		N	Cooking Oil		R
Allspice		Ν	Bromine		N	Copper Sulfate	Saturated	R
Allyl Alcohol		LR	Bromobenzene		Ν	Cresol		Ν
Alum (Aluminum Ammonsiu	m Sulfate)	R	Butane		R	Cupric Chloride	Saturated	R
Aluminum Chloride	Saturated	R	Butter		R	Cuprous Chloride	Saturated	R
Aluminum Oxalate		R	Butyl Acetate		N	Cyclohexane		R
Aluminum Sulfate	Saturated	R	Butyl Alcohol (Bu	tanol)	R	Cyclohexanol		LR
Ammonia (Gas)		N	Butylene Glycol		R	Cyclohexanone		N
Ammonia (Aqueous)		N	Butyric Acid		N	DDT		R
Ammonium Carbonate	e	LR	Calcium Chloride	e Saturated	R	Dekalin		R
Ammonium Chloride		R	Calcium Hypoch	lorite	R	Detergent (most)		LR or R
Ammonium Fluoride		N	Calcium Nitrate		R	Developing Solutions	S	N or LR
Ammonium Hydroxide	9	N	Calcium Soap Fa	t	R	Diamyl Phthalate		N
Ammonium Nitrate		R	Camphor Oil		N	Diesel Fuel		R
Ammonium Sulfate	Saturated	R	Carbolic Acid		N	Diethyl Ether (Ethyl Ethe	er)	N
Ammonium Sulfide		N	Carbon Bisulfite		R	Dimethyl Formaldehy	yde (DMF)	N
Amyl Acetate		N	Carbon Dioxide	Gas (Moist)	R	Dimethyl Sulfoxide (D	MSO)	Ν
Amyl Alcohol		LR	Carbon Disulfide	2	N	Dinonyl Phthalate (pla	sticizer)	LR
Aniline		N	Carbon Monoxid	de	R	Doctyl Phthalate (plast	ticizer)	LR
Antimony Trichloride	Saturated	R	Carbon Tetrachlo	oride	N	Dioxane		Ν
Aqua Regia (3 parts HCl:1 p	part HNO ₃)	LR	Castor Oil		R	Diphyl 5,3		LR
Arsenic Acid	20	R	Catsup (Ketchup)		R	Ethanol (Ethyl Alcohol) an	nd Water 96	R
Automatic Switch Grea	ase	R	Caustic Potash (F	Potassium Hydroxide)	Ν	Ethanol (Ethyl Alcohol)	Pure	LR
Automotive Waxes		LR	Caustic Soda (Soc	dium Hydroxide)	Ν	Ethyl Amine		Ν
Baby Lotion		R	Chlorine Gas (Dry	r)	LR	Ethyl Acetate		Ν
Bacon Fat		R	Chlorine Gas (We	t)	Ν	Ethyl Bromide		Ν
Barium Chloride		R	Chlorobenzene		Ν	Ethylene Chloride		Ν
Battery Acid		R	Chloroform		N	Ethylene Chlorohydri	n	Ν
Beer		R	Chocolate		R	Ethylene Dichloride		Ν
Beet Syrup		R	Chrome Alum	Saturated	R	Ethylene Glycol (Antifre	eeze)	LR
Benzaldehyde		N	Chromic Acid	20	R	Ferric Chloride	Saturated	R
Benzene		N	Cinnamon		R	Ferrous Sulfate		R
Benzoic Acid		N	Citric Acid	10	R	Fish and Fish Oils		R

The chemical resistance information in this table is based on our research and experience and may be considered solely as a basis for recommendation, but not as a guarantee, unless specifically furnished as such by Palram Americas.



Chemical	Concentration %*	Resistance
Floor Polish	25/100/100/17/0	R
Formalin	10%	R
Formic Acid	10% (30%)	R (LR)
Freon TF	,	R
Freon (all others)		N
Fruit Juices and Pulp		R
Gasoline		N
Gear Oil		R
Glazers Putty		R
Glucose		R
Glycerine		R
Glycerol		R
Glycols		R
Glutaraldehyde	50%	R
Grease, Automotive (Mos	t)	R
Heptane		R
Hexane		R
Hydrazine		N
Hydrochloric Acid	20 (Concentrated)	R (N)
Hydrofluoric Acid	20	R
Hydrogen Peroxide	30	R
Hydrogen Sulfide		R
lodine (aqueous solution)	5	R
lodine		N
Inks (Most)		R
Isoamyl Alcohol		LR
Isopropyl Alcohol		R
Kerosene		N
Lactic Acid	20	R
Lacquers and Thinners		N
Laundry Detergents (Mo:	st)	LR or R
Ligroin (Hydrocarbon Mixture)		R
Lime Solution (2%) or pa	ste	R
Liquors or Liqueurs		R
Linseed Oil		R
Loctite		N
Lubricating Oils (Most)		LR or R
Machine Oils (Most)		R
Magnesium Chloride	Saturated	R
Magnesium Sulfate	Saturated	R
Manganese Sulfate	Saturated	R
Margarine		R
Mayonnaise		R
Meat	6	R
Mercuric Chloride	Saturated	R
Mercury		R
Methane	D	R
Methanol (Methyl Alcohol)	Pure	LR N
Methylamine Methylamine		-
Methylcellusolve		N N
Methylene Chloride		
Methyl Ethyl Keton (MEK)		N N
Methylmethacrylate		
Milk Minoral Oil		R R
Mineral Oil Motor Oils (Most)		-
Motor Oils (Most)		LR or R
Mustard Naphtha (Stanical)		R
Naphtha (Stanisol) Nickel Sulfate		N R

Chemical	Concentration %*	Resistance
Nitric Acid	20	R
Nitrobenzene		N
Nitropropane		N
Nitrous Oxide		N
Nutmeg		N
Oleic Acid		R
Onions		R
Oxalic Acid	10	R
Oxygen		R
Ozone		N
Paprika		R
Paraffin		R
Pentane		R
Pepper		R
Perchloric Acid	10 (concentrated)	R (LR)
Perchloroethylene		N
Petroleum		LR
Petroleum Ether		LR
Petroleum Oil (Refined)		R
Phenol		N
Phosphoric Acid	10	R
Phosphorous Oxychloric		R
Phosphorous Pentoxide	25	LR
Phosphorous Trichloride		N
Polyethylene		R
Polyethylene Glycol		R
Potassium Acetate		LR
Potassium Aluminum		
Alum (Sulfate)	Saturated	R
Potassium Bichromate		R
Potassium Bromate		R
Potassium Bromide		R
Potassium Chloride	Saturated	R
Potassium Cyanide		N
Potassium Dichromate	Saturated	R
Potassium Hydroxide		N
Potassium Metabisulfite	4	R
Potassium Nitrate	Saturated	R
Potassium Perchlorate	10	R
Potassium Permanganat		R
Potassium Persulfate	10	R
Potassium Rhodanide	Saturated	R
Potassium Sulfate	Saturated	R
Propane		R
Propargyl Alcohol		R
Propionic Acid	20	R
Propionic Acid	Concentrated	N
Propyl Alcohol (1-Propanol)		R
Pyridine		N
Salad Oil		R
Salt		R
Silicofluoric Acid	30	R
Silicone Grease		R
Silicone Oil		R
Silver Nitrate		R
Soap (Ivory)		R
Sodium Bicarbonate	Saturated	R
Sodium Bisulfate	Saturated	R
Sodium Bisulfite	Saturated	R

Chemical	Concentration %*	Resistance
Sodium Carbonate	Saturated	R
Sodium Chlorate		R
Sodium Chloride	Saturated	R
Sodium Chromate		R
Sodium Hydroxide		N
Sodium Hypochlorite	5% Chlorine	R
Sodium Nitrate		N
Sodium Sulfate	Saturated	R
Sodium Sulfide		N
Sodium Thiosulfate		R
Spindle Oil		R
Stannous Chloride		R
Starch		R
Styrene		Ν
Sugar	Saturated	R
Sulfur Dioxide (Gas)		R
Sulfuric Acid	<50 (50<70)	R (LR)
Sulfurous Acid	10	N
Sulfuryl Chloride		N
Tapping Oil		R
Tartaric Acid	30	R
Tear Gas (Chloracetophenone)		LR
Terpineol		N
Tetrahydrofuran		N
Tetralin		N
Thiophene		N
Thyme		R
Titanium Tetrachloride		R
Tobacco		R
Toluene		Ν
Transformer Oils		R
Transmission Fluid		R
Trichloroacetic Acid	20	LR
Tricholorethylamine		N
Trichloroethylene		N
Trichloroethylphosphat	e	LR
Tricresylphosphite		N
Trisodium Phosphate		R
Turpentine		LR
Urea		R
Vacuum Pump Oil		R
Vanilla		R
Vanillin		R
Varnish		N
Vaseline		R
Vegetable Juices		R
Vegetable Oils		R
Vinegar		R
Water (Demineralized or Sea)		R
White Spirit		Ν
Wine, Whiskey, Vodka, R	um, Cognac	R
Witch Hazel		R
Worcester Sauce		R
V 1		N
Xylene		
xyiene Zinc Chloride		R
-		R R
Zinc Chloride		

^{*}concentration of aqueous solution except where noted
The chemical resistance information in this table is based on our research and experience and may be considered solely as a basis for recommendation, but not as a guarantee, unless specifically furnished as such by Palram Americas.

10-Year Limited Light Transmission Warranty*

It is warranted that for a period of 10 years, SunSky polycarbonate panels shall not lose more than 10% of their light transmitting capability, as a direct and exclusive result of the impact of solar radiation (as measured pursuant to the procedures specified in ASTM D-1003-77).

10-Year Limited Hail Damage Warranty*

It is warranted that for a period of 10 years, SunSky polycarbonate panels shall not break as a direct and exclusive result of the impact of hail measuring up to one inch diameter in size, and attaining up to 20 meters/sec. in velocity.

*This brochure contains statements of general company policy concerning customer satisfaction. There are no warranties which extend beyond that which are specifically set forth in the two limited warranties above.

Palram Americas reserves the right to change product specifications and/or information contained in this brochure.

Also Available:

Suntuf*Corrugated Polycarbonate Panels, SunLite* Multi-Wall Polycarbonate Panels, and Palruf* PVC Panels for residential, agricultural and commercial applications.

For detailed installation instructions visit www.PalramAmericas.com/SunSky and download the SunSky Installation Guide, or call Palram Americas at (800) 999-9459 to request a printed copy.

PALRAM AMERICAS

9735 Commerce Circle Kutztown, PA 19530 Phone: 800-999-9459

E-mail: PalramAmericas@Palram.com

www.PalramAmericas.com/SunSky

Authorized Dealer

